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abstract

本講演ではモノイダル圏のコホモロジーについて入門的に解説する. まずモノイダル圏の定義
と基本的な例を紹介する. 次に, 群のコホモロジーから圏のコホモロジーへの一般化を概観し, そ
の流れの中でモノイダル圏のコホモロジーの定義を説明する. 最後に射影表現との関係などの応
用例にも触れる.

1 導入
モノイダル圏 C とは, 圏 C にモノイダル積 ⊗ : C × C → C の構造が入ったものである. モノイ
ダル圏はアーベル群のテンソル積を一般化した概念としてよく用いられるが, 結び目理論におけるタ
ングルの圏など, 幾何学おいても重要な概念である. このような小さいモノイダル圏にコホモロジー
を対応させ, その性質を調べることが目標である. モノイダル圏のコホモロジーは [4]で初めて定義
され, TQFTに用いられているようであるが, 本小論では純粋な代数的な性質のみを考える.

群は対象が 1つの圏とみなせるが, 圏のコホモロジーは群のコホモロジーの一般化として定義され
る. 群 Gのコホモロジーは群環 Z[G]上の加群M を係数として, Ext•Z[G](Z,M)で定義される ([8])

が, 本小論では, 単体的に複体を構成したものを考える. モノイダル圏のコホモロジーは, 圏のコホモ
ロジーに用いる単体的に構成した複体の部分複体のコホモロジーで定義される.

群の射影表現や群の拡大は群の 2次のコホモロジーとある種の 1対 1対応がある ([2],[11])が, そ
の類似がモノイダル圏のコホモロジーで成り立つことを最後に見る.

本小論は, 修士論文 [10]に基づく.

2 モノイダル圏
モノイダル圏とモノイダル関手について説明する.

Definition 2.1. (C ,⊗, e, α, λ, ρ)がモノイダル圏 (monoidal category)であるとは以下を満たすこ
とである.

• C は圏, − ⊗ − : C × C → C は関手である. すなわち, C の対象 a, a′ に対して C の対象
a⊗ a′ が定まり, C の射 f : a→ b, f : a′ → b′ に対して C の射 f ⊗ f ′ : a⊗ a′ → b⊗ b′ が定
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まる.

• e ∈ C

• α : (−⊗−)⊗− → (−⊗−)⊗−は自然同型, であって, 5角関係式というものを満たすもの
である.

• λ : e⊗− → id, ρ : −⊗ e→ idは自然同型, であって, 3角関係式というものを満たすもので
ある.

• 単位 eに対して
λe = ρe : e⊗ e→ e

特に, α, λ, ρが全て identityのとき, (C ,⊗, e)を strict モノイダル圏 (strict monoidal category)

という.

以降 (C ,⊗, e, α, λ, ρ)を単にモノイダル圏 C と書くこともある.

Example 2.2. • 集合の圏 Setは直積 ×をモノイダル積として, モノイダル圏となる.

• アーベル群の圏Abはテンソル積 ⊗をモノイダル積として, モノイダル圏となる.

• アーベル群の圏Ab直和 ⊕をモノイダル積として, モノイダル圏となる. これを特にAb⊕ と
書く.

Example 2.3. モノイダル圏 Symを以下で定義する.

• ob(Sym) := Z≥0

• HomSym(m,n) :=

Sm m = n

∅ m 6= n
, m,n ∈ Z≥0, Sm はm次対称群

• 合成は群の積
• m⊗m′ := m+m′ , m, n ∈ Z≥0

• (σ ⊗ σ′)i :=

σi 1 ≤ i ≤ m

σ′
i−m m+ 1 ≤ i ≤ m+m′

, σ ∈ Sm, σ′ ∈ Sm′ , σ ⊗ σ′ ∈ Sm+n

Definition 2.4. (C ,⊗, e, α, λ, ρ), (C ′,⊗′, e′, α′, λ′, ρ′)をモノイダル圏とする. 組 (F, F 2, F 0)が以
下の条件を満たすとき, (lax)モノイダル関手 (lax monoidal functor)という.

• F : C → C ′ は関手である,

• F 2 : F − ⊗′F− → F (− ⊗ −) は自然変換である. すなわち a, a′ ∈ C に対し F 2
a,a′ :

Fa ⊗′ Fa′ → F (a ⊗ a′) があり, 任意の f : a → b, f ′ : a′ → b′ に対し以下の図式を可換に
する.

Fa⊗′ Fa′ F (a⊗ a′)

Fb⊗′ Fb′ F (b⊗ b′)

F 2
a,a′

Ff⊗′Ff ′
F (f⊗f ′)

F 2
b,b′

• F 0 : e′ → Feは C ′ の射である.



• 任意の a, b, c ∈ C に対して, 以下の図式を可換にする.

(Fa⊗′ Fb)⊗′ Fc F (a⊗ b)⊗′ Fc F ((a⊗ b)⊗ c)

Fa⊗′ (Fb⊗′ Fc) Fa⊗′ F (b⊗ c) F (a⊗ (b⊗ c))

F 2
a,b⊗

′id

α′

F 2
a⊗b,c

Fα

id⊗′F 2
b,c F 2

a,b⊗c

• 任意の a ∈ C に対して, 以下の図式を可換にする.

e′ ⊗′ Fa Fa Fa⊗′ e′ Fa

Fe⊗′ Fa F (e⊗ a) Fa⊗′ Fe F (a⊗ e)

λ′

F 0⊗id

ρ′

id⊗F 0

F 2
e,a

Fλ

F 2
a,e

Fρ

F 2, F 0 が共に同型のとき strongモノイダル関手といい, F 2, F 0 が共に identityのとき strictモ
ノイダル関手という.

以降 (F, F 2, F 0)を単にモノイダル関手 F : C → C ′ と書くこともある.

Example 2.5. F : Sym→ Ab⊕ を, Fm := Zm, m ∈ Symとし, σ ∈ Sm に対して, Fσ : Zm →
Zm を σ に沿った基底の入れ替えで定義する. すなわち, Zm の基底を x1, x2, . . . , xm としたとき,

Fσ(xi) := xσi
, 1 ≤ i ≤ m

である. F 2
m,m′ : Zm ⊕ Zm′ → Zm+m′ を, xi 7→ xi, x′

i 7→ xm+i で定める. F 0 : 0→ 0はただ 1つ存
在する. このようにすると, (F, F 2, F 0)はモノイダル関手となる.

Example 2.6. C をモノイダル圏, M をアーベル群とする. F : C → Ab⊕ を, Fa := M, ∀a ∈ C ,

Ff := idM , ∀f : a → b ∈ C とする. F 2
a,a′ := idM ⊕ idM : M ⊕M → M とし, F 0 : 0 → M をた

だ 1つの射とすると, (F, F 2, F 0)はモノイダル関手となる.

3 モノイダル圏のコホモロジー
[4]で定義されたモノイダル圏のコホモロジーについて説明する.

Definition 3.1. 単体的集合 (simplicial set) S とは, 集合の族 {Sn}n∈Z≥0
と, 集合の間の写像の族

dni : Sn → Sn−1 , n ∈ Z≥0, 0 ≤ i ≤ n

sni : Sn → Sn+1 , n ∈ Z≥0, 0 ≤ i ≤ n

であって, 以下の関係式を満たすものである.

dni d
n+1
j+1 = dnj d

n+1
i (i ≤ j)

sn+1
j+1 s

n
i = sn+1

i snj (i ≤ j)

dn+1
i snj =


sn−1
j−1 d

n
i (i < j)

idSn
(i = j, i = j + 1)

sn−1
j dni−1 (i > j + 1)



しばしば, dni , s
n
i を単に di, si と書く.

Definition 3.2. C を小圏とする. C の nerve N(C )を以下の単体的集合で定義する.

• N(C )0 := ob(C )

• q ≥ 1, N(C )q := {((f1, f2, . . . , fq)) | 各 fiは C の射で, t(fi+1) = s(fi)}

つまり q ≥ 1のときは q 個の順に結合できる射の組と言える.

f1←− f2←− · · · fq←−

次に d : N(C )q → N(C )q−1 を

• q = 1のとき d0(f) := t(f), d1(f) := s(f)

• q > 1のとき di(f1, . . . , fq) :=


(f1, . . . , fq−1) (i = 0)

(f1, . . . , fq−i ◦ fq−i+1, . . . , fq) (i = 1, . . . , q − 1)

(f2, . . . , fq) (i = q)

s : N(C )q → N(C )q+1 を

• q = 0のとき s0(A) := idA

• q > 0のとき si(f1, . . . , fq) := (f1, . . . , fq−i, id, fq−i+1, . . . , fq) (i = 0, . . . , q)

と定義する. これは単体的集合の関係式を満たしいる.

Notation 3.3. 圏 C の nerveN(C )とする. σ = (f1, . . . , fq), σ
′ = (f ′

1, . . . , f
′
q) ∈ N(C )q (q ≥ 1)

に対して,
σ ⊗ σ′ := (f1 ⊗ f ′

1, . . . , fq ⊗ f ′
q) ∈ N(C )q

と書く. di(σ ⊗ σ′) = di(σ)⊗ di(σ
′), si(σ ⊗ σ′) = si(σ)⊗ si(σ

′)であることがわかる.

また, s(σ) := s(fq), t(σ) := t(f1)と書く.

単体的集合 S アーベル群 Rに対して, Cq(S;R) := Map(Sq, R), コバウンダリー写像を

δ :=

q+1∑
i=0

(−1)i − ◦di : Cq(S)→ Cq+1(S)

とすることでコチェイン複体 C•(S;R) が得られることが知られている ([1],[7]). 圏 C の nerve に
対してこの事実を適用することで, 圏のコホモロジーが定義される. すなわち, 複体 C•(C ;R) :=

C•(N(C );R)の q 次コホモロジーを, 圏の R係数 q 次コホモロジーと言う. この定義は, 群を対象が
1つの圏とみなしたとき, 群のコホモロジーである [8].

Definition 3.4 ([4]). C をモノイダル小圏, R をアーベル群とする. 部分複体 C•
⊗(C ;R) ⊂

C•(C ;R)を

Cq
⊗(C ;R) := {α ∈ Map(N(C ), R) | α(σ ⊗ σ′) = α(σ) + α(σ′) , ∀σ, σ′ ∈ N(Cq)}



として, この q 次コホモロジーをモノイダル圏 C の R 係数 q 次コホモロジーといい, Hq
⊗(C ;R)

と書く. すなわち, Zq
⊗(C ;R) := Ker δ ⊂ Cq

⊗(C ;R), Bq
⊗(C ;R) := Im δ ⊂ Cq

⊗(C ;R) として,

Hq
⊗(C ;R) := Zq

⊗(C ;R)/Bq
⊗(C ;R)とするのである.

筆者の学士論文 [9]で, 以下のモノイダル圏のコホモロジーの不変量としての性質を示した.

Theorem 3.5. C ,D がモノイダル圏同値なら,

Hq
⊗(C ;R) ∼= Hq

⊗(C ;R) , ∀q ∈ Z≥0

である,

4 主定理
群 Gのコホモロジーの係数は G-加群に拡張できるが, 群を対象が 1つの圏とみなしたとき, G-加
群とは関手 G→ Abのことである. 同様に圏 C のコホモロジーはその係数を関手 C → Abに拡張
できる ([1]). したがって, モノイダル圏 C のコホモロジーの係数はモノイダル関手 C → Ab に拡
張できると予想できるが, Abに通常のテンソル積を入れたモノイダル圏とみなすと上手く行かない.

そこで, Abに直和でモノイダル積が入った圏 Ab⊕ を考え, 係数をモノイダル関手 C → Ab⊕ に拡
張できることを示した.

Theorem 4.1 (Cho). C をモノイダル小圏, M : C → Ab⊕ を (lax)モノイダル関手とする. Ab⊕

は直和 ⊕をモノイダル積とするアーベル群のなす圏である.

Cq
⊗(C ;M) :=

{
α ∈ Map

(
N(C )q,

⊕
a∈C

Ma

)
|
α(σ) ∈M(t(σ))

α(σ ⊗ σ′) = M2
t(σ),t(σ′)(α(σ), α(σ

′))
, σ, σ′ ∈ N(C )q

}
(4.1)

δ : Cq
⊗(C ;M)→ Cq+1

⊗ (C ;M)を, α ∈ Cq
⊗(C ;M), σ = (f1, . . . , fq+1) ∈ N(C )q+1 に対して,

δ(α)(σ) :=

q∑
i=0

(−1)iα ◦ di(σ) + (−1)q+1Mf1(α ◦ dq+1(σ)) (4.2)

とする. このとき, (C•
⊗(C ;M), δ)はコチェイン複体となる.

Definition 4.2. C をモノイダル小圏, M : C → Ab⊕を (lax)モノイダル関手とする. Theorem4.1

で得られたコチェイン複体 (C•
⊗(C ;M), δ) の, q 次コホモロジーをモノイダル圏 C の M 係数

q 次コホモロジーといい, Hq
⊗(C ;M) と書く. すなわち, Zq

⊗(C ;M) := Ker δ ⊂ Cq
⊗(C ;M),

Bq
⊗(C ;M) := Im δ ⊂ Cq

⊗(C ;M)として, Hq
⊗(C ;M) := Zq

⊗(C ;M)/Bq
⊗(C ;M)とするのである.

関手M を Example2.6のように, 全ての対象を同じアーベル群 Rに送る関手とすると, モノイダ
ル圏の R係数コホモロジーと一致することがわかる.

群のコホモロジーは G-加群のなす圏上の Extを用いて表すことができ ([8]), 圏のコホモロジーも
同様に関手圏AbC 上の Extを用いて表せる. では, モノイダル圏のコホモロジーはモノイダル関手
圏AbC

⊕ 上の Extとなりそうだが, これには具体的な計算による反例が存在する.



Example 4.3. アーベル群 A を対象が 1 つのモノイダル圏とみなした時の M 係数のコホモロ
ジーは

Hn
⊗(A;M) ∼=

{
Hom(A,M) n = 1

0 n 6= 1

である. もし, ある F : AbA
⊕ → Abが存在して, Hn(A;M) ∼= RnF (M)であれば, 任意の AbA

⊕ 内
の完全列 0→ L→M → N → 0に対して, 長完全列

0 H0
⊗(A;L) H0

⊗(A;M) H0
⊗(A;N)

H1
⊗(A;L) H1

⊗(A;M) H1
⊗(A;N)

H2
⊗(A;L) H2

⊗(A;M) H2
⊗(A;N) · · ·

が得られる. 0 → L→ M → N → 0が Ab内の完全列とすると, これは AbA
⊕ 内の完全列ともみな

せるが, この時の長完全列は

0 0 0 0

Hom(A,L) Hom(A,M) Hom(A,N)

0 0 0 · · ·

となる. しかし, Aが射影加群でない時は, 一般に完全ではない. よって, この場合はAbA
⊕ → Abの

導来関手としては表せない.

5 2次のコホモロジーの応用
モノイダル圏のコホモロジーは [4]で, モノイダル圏の射影表現やモノイダル圏の拡大を意識して
作られた概念である. 以下では, その結果のみを述べる.

Definition 5.1. C を圏, k を体とする. C の k 上のモノイダル射影表現 F とは, 組
((Fx)x∈ob(C ), (Fα)α∈Mor(C ))であって, 以下の性質を満たすものである.

• 各 x ∈ C に対して, Fxは k-加群である.

• C の射 α : x→ y に対して, Fα : Fx→ Fy は k-準同型.

• 各 α : x→ y, β : y → z に対して, ある τ(β, α) ∈ k× が存在して,

Fβ ◦ Fα = τ(β, α)F (β ◦ α)

となる.

• x, x′ ∈ C に対して, Fx⊗k Fx′ = F (x⊗ x′)



• α : x→ y, β : x′ → y′ に対して, Fα⊗k Fα′ = F (α⊗ α′)

F,G を k 上の射影表現とする. 各 x ∈ C に対して, k-準同型 φx : Fx → Gx が, 任意の C の射
α : x → y, α′ : x′ → y′ に対して, 以下の図式を可換にするとき, φ : F → Gを k 上のモノイダル射
影表現の射という.

Fx Gx

Fy Gy

φx

Ff Gf

φy

Fx⊗k Fx′ F (x⊗ x′)

Fy ⊗k Fy′ F (y ⊗ y′)

φx⊗kφx′ φx⊗x′

Theorem 5.2. C をモノイダル小圏, k を体とする. C の k 上のモノイダル表現 F とする. C の射
α : x→ y, β : y → zに対して, Fβ ◦Fα = τ(β, α)F (β ◦α)とすると, τ は 2-cocycle τ ∈ Z2

⊗(C ; k×)

となる.

また F,Gを K 上のモノイダル射影表現とし, k 上のモノイダル表現の射 φ : F → Gが存在する
とき, F,Gから得られる 2-cocycle τ, τ ′ は cohomologousである. すなわち,

[τ ] = [τ ′] in H2
⊗(C ; k×)

となる.

Definition 5.3. 圏の拡大とは, 圏の間の関手の列

M E Ci p

であって, 以下の性質を満たすものである.

• ob(M ) = ob(E ) = ob(C ) であって, i, p は object においては identity である. すなわち,

i = id : ob(M )→ ob(E ), p = id : ob(E )→ ob(C )である.

• i : M → E は faithfulで, p : E → C は fullである.

• E の射 f, gに対して, p(f) = p(g)であることと, M の射mがただ 1つ存在して, f = i(m)◦g
であることが同値である.

特に圏の拡大M
i−→ E

p−→ C は, M ,E ,C がモノイダル圏で, i, pが strict モノイダル関手のとき,

モノイダル圏のモノイダル拡大という.

C をモノイダル小圏, M : C → Ab⊕ を関手とする. このとき, モノイダル小圏M を, ob(M ) :=

C ,

HomM (x, y) :=

{
Mx x = y

∅ x 6= y

m ∈ EndM (x) = Mx,m′ ∈ EndM (x′) = Mx′ に対して

m⊗m′ := M2
x,x′(m,m′) ∈M(x⊗ x′) = EndM (x⊗ x′)



で定義する. ただし, 合成はアーベル群の積演算である (◦ := +). また, idx = 0 ∈ M(x) である.

このようなM を用いて, モノイダル圏のモノイダル拡大M
i−→ E

p−→ C であって, 任意の E の射
f : x→ y とm ∈ EndM (x) = M(x)に対して,

f ◦ i(m) = i(M ◦ p(f)(m)) ◦ f

が成り立つものを, モノイダル圏 C のM によるモノイダル拡大という.

p : E → C は fullであるから, 任意の C の射 α : x→ y に対して, ある E の射 s(α) : x→ y が存
在して, p(s(α)) = αとなる. このような sを pのセクションという. pのセクション sが任意の C

の射 α, α′ に対して,
s(α⊗ α′) = s(α)⊗ s(α′)

を満たすとき, sをモノイダルセクションという.

モノイダルセクションを持つ C のM によるモノイダル拡大全体の集合を ẽxt⊗(C ;M)と書く.

Definition 5.4. M
i1−→ E1

p1−→ C ,M
i2−→ E2

p2−→ C をモノイダル圏のモノイダル拡大とする. あ
るモノイダル関手 F : E1 → E2 が存在して, 以下の図式が可換になるとき, 同値なモノイダル拡大と
いう.

M E1 C

M E2 C

i1 p1

F

i2 p2

Theorem 5.5 (Cho). C をモノイダル小圏, M : C → Ab⊕ をモノイダル関手とする. このとき,

以下の 1対 1対応が存在する.

ẽxt⊗(C ;M)/ ∼= H2
⊗(C ;M)

bij

Example 5.6. Example 2.3 の対称群を集めたモノイダル圏 Sym を考える. 各 Sym の射 σ :

m → m を m 個の紐とみなすと, この紐を帯のようにして帯を捻ったものを射とするような圏を考
えられる. この圏を枠付き対称圏 (framed symmetric category)といい, Symfr と書く. Symfr は
Symの射の各紐に捻りの回数がついたものとみなせる. 捻りの向きは 2種類あり, 反対向きの捻り
は打ち消し合うので, Symfr の射m→ mは, Symの射m→ mと Zm の元のペアとみなせる. す
なわち, HomSymfr (m,m) ∼= Zm ×HomSym(m,m)となる.

自然な full モノイダル関手 p : Symfr → Sym が存在する (帯の捻りを無視する関手) が,

この p が誘導するモノイダル圏のモノイダル拡大 M
i−→ Symfr p−→ Sym を考えたい. M は,

EndM (x) = p−1(idx) ∼= Zx となる. このようにするとモノイダル拡大となっていることがわかる.

M : Sym→ Ab⊕ を, Example 2.5の対称群の元に沿って基底を入れ替える関手とすると, M に
よる Symのモノイダル拡大は H2

⊗(Sym;M)と 1対 1に対応する. 上記の拡大は H2
⊗(Sym;M)の

0に対応する.

SymのM による拡大は Symfr の対象と射は変えずに, その合成のみを変化させる. よって, 枠
付きの対称群の紐の合成のし方は H2

⊗(Sym;M)ごとに同型を除いて分類できることがわかる.
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